bond moment of 0.5 D will nicely raise μ_a and lower μ_c to the observed values only if the negative end is directed to the phosphorus with the fluorine substituents. This value suggests an inductive effect from the fluorines, and the direction of the bond dipole is consistent with the greater Lewis basicity toward borane of the phosphorus with the attached fluorines. It is interesting to note that the same value for the PP bond moment fits both μ_a and μ_c for H₂PPF₂, implying that the bond dipole moments in PF₃, PH₃, and H₂PPF₂ are internally consistent.

This investigation shows that the stable conformation is trans with no evidence for appreciable amounts of a gauche conformer. This is particularly interesting for two reasons. First, there appears to be no tendency for the lone pair on the PH₂ group to form a d_{π} -p_{π} bond to the PF₂ end since this would make the PH₂ group planar. This effect can be invoked to rationalize the planar arrangement around the nitrogen in H₂NPF₂¹² and (CH₃)₂NPF₂.¹¹ An analogy to this result has been observed with N (SiH₈)₃ which is planar²⁴ while P(SiH₃)₃ is pyramidal.²⁵

Second, the stability of the trans form is interesting in view of the electrical asymmetry in H_2PPF_2 ; apparently an internal attraction between the hydrogens and

(24) B. Beagley and A. R. Conrad, Trans. Faraday Soc., 66, 2740 (1970).
(25) B. Beagley, A. G. Robiette, and G. M. Sheldrick, J. Chem. Soc., 601 (1967).

fluorines is not influential enough to stabilize the gauche isomer. There is, however, some suggestion of an interaction involving the hydrogens since the PPH angle is a "small" 90°. Since H_2PPF_2 readily decomposes to HPF_2 , it seems preferable to call the interaction an attraction presumably toward the lone pair on the adjacent phosphorus.

The data now available indicate that all gaseous diphosphines have the trans conformation except H_4P_2 . A trans conformation seems readily justified invoking steric repulsion and/or lone pair interactions. These two effects should be the smallest in H_4P_2 so a gauche conformation would be more likely; nevertheless some stabilizing interaction must still operate to give the gauche conformation. The results of this investigation certainly suggest that further studies of the molecular and electronic structure of H_4P_2 and its potential function for rotation about the PP bond are warranted.

Acknowledgment.—This research was supported by a grant (GP 11388) from the National Science Foundation, Washington, D. C. We are also grateful to Professor R. H. Schwendeman for helpful discussions concerning the Stark effect. The sponsorship of H. W. S. by the Civilian Institutions Program, Air Force Institute of Technology, is gratefully acknowledged.

Contribution from the Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48104

Vibrational Spectra and Assignments for Isotopic Species of Tetraborane(10)¹

BY ALTON JOE DAHL AND ROBERT COOPER TAYLOR*2

Received February 16, 1971

Four isotopically enriched species of tetraborane(10) have been prepared involving hydrogen, deuterium, boron-10, and boron-11. The infrared spectra of these compounds have been investigated in the gas and solid states in the spectral region from 400 to 4000 cm^{-1} . Low-resolution Raman spectra in the liquid and solid states have been obtained and qualitative polarization measurements made. Vibrational modes of this molecule have been described on the basis of a symmetry analysis and a group vibration approximation. Tentative vibrational assignments have been made for 34 of the 36 fundamentals.

Introduction

Despite the extensive chemical interest in the boron hydrides and the intriguing nature of the hydrogen bridge bond which these compounds contain, spectroscopic attention has been focused almost entirely upon the simplest member of the series, diborane. Experimental difficulties caused by the reactive nature and general thermal instability of the higher hydrides, together with spectroscopic complications inherent in their relatively large size and the lack of isotopic purity of natural boron, seem to have been effective deterrents to study. These compounds clearly deserve considerably more attention than they have been accorded.

In the present work, the vibrational spectra of four

isotopic varieties of tetraborane (10), B_4H_{10} , have been investigated in the gas, liquid, and solid states under low resolution in order to arrive at a preliminary set of vibrational assignments. The infrared spectrum of this compound prepared from boron containing the natural isotopic abundance has been reported in the literature, the most detailed results being those of Spielman and Burg,³ who published the infrared spectrum of the vapor for both the hydrogen and deuterium compounds. Qualitative assignments were given based on frequency shifts and analogies with the spectra of other compounds. No Raman data have been found. A few infrared frequencies for the mixed isotopic species, $B_4H_8D_2$, have also been reported.⁴ The only other higher boron hydride which has been given any signifi-

⁽¹⁾ Based on a dissertation submitted by A. J. Dahl in partial fulfillment of the requirements of the Ph.D. degree to the Horace H. Rackham School of Graduate Studies of The University of Michigan.

⁽²⁾ Author to whom correspondence should be addressed.

⁽³⁾ J. R. Spielman and A. B. Burg, Inorg. Chem., 2, 1139 (1963).

⁽⁴⁾ A. D. Norman and R. Schaeffer, J. Amer. Chem. Soc., 88, 1143 (1966).

cant amount of spectroscopic study is pentaborane-(9).^{5,6}

Experimental Section

The isotopic composition of natural boron, which has a 4:1 ratio of boron-11 to boron-10, introduces a number of complications into the vibrational spectra of boron hydrides prepared from natural material. Since most of the molecules in such a sample will have an actual symmetry less than the geometrical symmetry, selection rules will be relaxed and splitting of bands or isotopic satellites will occur. Under low resolution, the latter effects may result only in a general broadening of the bands, but asymmetric line shapes and unresolved shoulders may also be observed. Further effects may be greater difficulties in distinguishing overlapping fundamentals and significant shifts in the positions of apparent band maxima. Since the mass difference for the two boron isotopes is nearly 10%, the problems are not insignificant. To minimize such effects and aid the interpretation of the results, hydrogen and deterium species of tetraborane isotopically enriched in boron-10 and also boron-11 were synthesized for the present investigation. The extent of isotope mixing in molecular species based on the overall isotopic composition is indicated in Table I which compares natural boron with the enriched compositions used in the present work.

TABLE I

STATISTICAL DISTRIBUTION OF VARIOUS ISOTOPIC SPECIES IN TETRABORANE ASSUMING EQUAL a priori PROBABILITIES

	Boron-enriched compounds						
Isotope	$^{10}B_{4}$	¹⁰ B ₃ ¹¹ B	$10\mathbf{B}_{2}^{11}\mathbf{B}_{2}$	10B11B3	${}^{11}B_4$		
enrichment	$(1)^{a}$	(2)	(3)	(2)	(1)		
92% $^{10}\mathrm{B}$	0.716	0.249	0.033	0002	0.000		
80% ¹¹ B	0.002	0.026	0.154	0.409	0.409		
99.4% ¹¹ B	0.000	0.000	0.000	0.024	0.976		
		Deuteriu	m-enriched	compounds-			
	D ₁₀ (1)*	D ₉ H (4)	D_8H_2 (17)			
97% D	0.7	37	0.228	0.032			

^a Numbers in parentheses indicate the number of nonidentical species which have the given mixture of isotopic atoms.

Preparation of Compounds .- Boron trifluoride enriched to 99.4 atom % ¹¹B or to 92 atom % ¹⁰B was prepared by the thermal decomposition of the correspondingly enriched potassium fluoroborate and converted to the ethyl ether complex. The latter was then reduced by a mixture of LiH and LiAlH, in ether solution to give the enriched diborane. Ninety-seven per cent enriched LiD plus AlCl₃ was used for the deuterated material. The diborane was converted into an approximately equimolar mixture of tetraborane and pentaborane(11) by circulating it continuously through a thermal reactor held at 125° followed by a trap maintained at -78° . After 1 hr, during which time the pressure in the system slowly increased to nearly 2 atm from the production of hydrogen, the -78° trap was replaced with one at -196° and the hydrogen pumped off. The trap was then rewarmed to -78° and circulation continued. After four such cycles, a typical preparation produced 5 mmol of a mixture of tetraborane(10) and pentaborane(11) from an initial 17 mmol of diborane. The product mixture was separated by repeated trap-to-trap distillations and the purity of the tetraborane established by vapor pressure measurements and infrared spectra. Purified samples were stored at liquid nitrogen temperatures until used.

Spectroscopic Equipment and Procedures.—Infrared spectra were recorded with a Perkin-Elmer Model 21 spectrophotometer equipped with CaF₂, NaCl, and KBr prisms using indene lines for calibration. Gases were examined in a 10-cm cell with KBr windows. Solids were in the form of thin nonscattering films deposited from the vapor on a KBr plate maintained near liquid nitrogen temperatures in an evacuated cell.

Raman spectra of the samples were recorded photographically using a Gaertner two-prism instrument having a dispersion of about 180 cm⁻¹/mm in the blue region. Under the conditions of the experiments, the resolution attained was about 10 cm⁻¹. The most intense bands were also photographed under higher resolution using a Bausch and Lomb 1.5-m grating instrument. For the liquids, a Toronto type mercury arc source was used with which the temperature of the samples could be maintained at about -80° .⁷ Sample volumes were in the range of 0.1-0.3 ml.

Details of the experimental apparatus and arrangement for the solid samples are available elsewhere.⁸ Briefly, two Type AH-4 mercury arc lamps were used to supply Hg 4358 Å radiation. High spectral purity was obtained by passing the light through two narrow band pass multilayer filters after which it was focused on the sample contained in a 5-mm o.d. Pyrex tube. This tube was in good thermal contact with two heavy copper supports attached directly to a liquid nitrogen reservoir. Thermocouple measurements indicated that sample temperatures were below -160° .

To reduce the high intensity of incident radiation scattered from the polycrystalline samples, the scattered light was passed into the spectrograph via a discrimination unit which greatly reduced the relative intensity of the exciting radiation. This unit consisted of two parallel multilayer dielectric interference filters having a band pass maximum at 4358 Å. The scattered light from the sample was multireflected between the parallel faces before entering the spectrograph. At each reflection, approximately 70% of the 4358-Å radiation was removed by transmission through the filter surface, but, due to the interference nature of the filters, better than 98% of the Raman radiation was reflected. On the basis of six reflections, it was calculated that less than 0.1% of the 4358-Å light entering the discrimination unit reached the spectrograph slit whereas the Raman radiation was attenuated only to about 75% of the incident. The use of dielectric filters for this purpose has been described previously^{9,10} but fewer reflections were employed. This technique not only made it possible to obtain good-quality spectra from polycrystalline samples but also markedly reduced the width of the Rayleigh line in the spectra of the small liquid samples (Figure 1).

Figure 1.—Polarized Raman spectra of liquid ${}^{10}B_4H_{10}$ at -80° .

Frequencies of the Raman bands were determined from measurements on both the plates and microphotometer tracings using a fourth-degree polynomial fitted to standard argon lines. Esti-

⁽⁵⁾ H. J. Hrostowski and G. C. Pimentel, J. Amer. Chem. Soc., 76, 998 (1954).

⁽⁶⁾ S. R. Coriell and W. J. Taylor, Symposium on Molecular Structure and Spectroscopy, The Ohio State University, June 1964.

⁽⁷⁾ G. L. Vidale and R. C. Taylor, J. Amer. Chem. Soc., 78, 294 (1956).

⁽⁸⁾ A. J. Dahl, Dissertation, The University of Michigan, 1963.

⁽⁹⁾ J. Brandmuller, Z. Angew. Phys., 5, 95 (1953).

⁽¹⁰⁾ R. L. Amster and R. C. Taylor, Spectrochim. Acta, 20, 1487 (1964).

	TABLE II	
Observed Infrared	and Raman Frequencies of ${}^{10}B_4H_{10}$ and ${}^{11}B_4H_{10}$	

^{1°8} 4 ^H 10				11B4H10					
Infra	Infrared		Raman		Infrared		Raman		
Gas	Solid	Liquid	Solid	Gas	Solid	Liquid	Solid	Assignment	
2500 444	2588 ve	2583 yvs(n)	2595 vvs	2570 VVS	2575 VVS	2566 vys(n)	2562 s		
2495 445	2570 vvs	2494 yys(p)	2495 uve	2485 ve	2550 vvs	2490 yys(n)	2488 vs	VV	
2455 115	2436 w,sh	2,04 7,0(7)	2439 VVW		2285 444			2(22.22.2)	
2285 w	2268 m			2270 w	2255 W			$v_{23} + v_{32}$	
2150	2128	2140	2150 s sh	2150 ve	2165 s	2136 vs	2133 m	$v_{16} + v_{33}$	
2150 45	2126 VVS	2149 445	2116 444	2150 43	2005 443	2107 444(1)	2106 .	01310213030	
	2091 5	2110 445(p)	2110 445		2085 sh	2069 m	2073	V16 + V32	
	2070 Sh	2071 W	2000 11		2040 sh	L005 N	2073 #	$v_{23} + v_{23}$	
	1996 vw				1970 vw.br			$v_{11} + v_{33}$	
	1950 VVW				1924 sh			2015	
1870 vvw	1868 w			1850 vvw	1854 w		,	$v_{17} + v_{34}$	
1030 AAM	1043 VVW				1825 vvw			V18 + V24	
	1810 vvw				1783 999			2014	
	1774 144	1766			1750 vw	1747 vvw	1762 vw	$v_{0} + v_{10}$	
1750 vvw,br	1753 W	1700 444			1720 sh			$v_{11} + v_{34}$	
	1697 vw				1690 br 1670 vw			2025	
					1651 sh			$v_{5} + v_{13}$	
					1618 sh			$v_7 + v_{35}$	
	1594 vw				1578 VVW			$v_{12} + v_{16}$	
	1540 w.br	1553 vw(p)			1531 sh	1529 vw(p)		$v_{32} + v_{33}$	
	1461 -	1485 vw	1456	1445 VE 1 C)	1475 w	1465 VVW		v_{0} + v_{12}	
	1435 VW	1430 vvw	1433 VVW		1422 w	1403 14(p)		$v_{12} + v_{14}$	
1407 s	1410 vw			1395 s(A,C)	1388 vs			V31	
	1361 999	1373 vw	1375 vvw		1351 vw 1343 vvw	1353 vw		V3. + V35	
	1343 s				1324 m 1308 m			V1. 01 V22	
	1313 1.	1296 vw	1297 vvw		1288 m			V32 + V36	
1279 vvw	1269 vw 1218 m	1219 vvw	1228 vvw	1258 w(A,C)	1255 s 1217 sh			Ve Via + Via	
1209 VW	1211 s 1171 s			1196 m,sh 1153 s,sh	1196 s 1154 m			V25 Va + V36	
1156 W 1142 VS(A.C	1157 vs 1152 vs	1156 m	1155 w	1140 vs(A.C)	1145 s	1149 m	1144 w	V7. V33	
	1128 sh 1124 vs	1·127 m	1129 m	1116 w,sh	1134 m 1117 s	1121 w	1118 w	121 + 732 121	
1071 m	1071 vs	1071 m	1075 m	1070 s(A,C)	1064 vs	1065 m 1041 w	1062 w 1041 vw	V32 V12 + V35?	
	1042 vs 989 vvw	1038 m	1037 w		1023 s			V16 V18 + V36	
974 vs	964 vvs	975 s(P)	975 s	966 vs	959 vvs 929 vw	965 s(P) 940 vvw	964 w	V10,V24 2V35	
916 vw 905 w	917 vs 906 vs	901 vw	906 vw	910 vw 895 w	908 vs 898 vs	898.vw		V 8 V 3 4	
854 vs(A,(872 vs () 854 vvs	882 vw	885 vw	848 s(A,C)	868 vs 846 vvs	867 vw		V L 7 V 2 S	
	805 sh	850 vs(p)	853 m		824 vvw 798 m	827 vs(p)	825 m	$\frac{v_{11}}{v_{12}} + v_{16}$	
800 w	802 s 754 s	805 s(p) 748 vvw	806 s 750 vvw	780 w,sh	783 m 737 m	/85 S(p)	784 S		
	682 vvw	672 m	680 m		662 W	659 m	650 w	V5 * V16 V19 2	
	575 vs	579 s(p)	584 m	550 m	559 vs	558 s(p)	557 w	V 1 2 7	
	474 s	483 VW		470 w	480 s	472 vw 413 vvw		V 3 8 ?	
	71 8 77 8	366 VVW 238 m				372 VVW 236 m		? V 3.6	

mated uncertainties are about 2 cm^{-1} for the more intense peaks and somewhat greater for the weaker ones. The uncertainties in the maxima of the infrared absorption bands are approximately the same.

Results

Observed vibrational frequencies for the four isotopic varieties of tetraborane in the gas, liquid, and solid states are listed in Tables II and III. Polarized Raman spectra of ${}^{10}\mathrm{B}_4\mathrm{H}_{10}$ and ${}^{10}\mathrm{B}_4\mathrm{D}_{10}$ are shown in Figures 1

and 2 in the form of microphotometer tracings. Figure 3 shows the vapor and solid spectra of the hydrogen and deuterium compounds prepared from boron-11.

X-Ray diffraction studies on the solid¹¹ have shown that the boron skeleton of tetraborane consists of two triangles of boron atoms which share a common edge

(11) C. E. Nordman and W. N. Lipscomb, J. Chem. Phys., 21, 1856 (1953). See also E. B. Moore, R. E. Dickerson, and W. N. Lipscomb, *ibid.*, 27, 209 (1957).

	IABLE III	
<u></u>	There was Discour Entertained on 10D D. Larn 11E) Th
OBSERVED	INFRARED AND KAMAN FREQUENCIES OF "D4LD10 AND "F	4 D ₁₀

¹⁰ B4 ⁰ 10				1184010		-	-	
Infra	red	Ra	iman	Infrar	ed	Rama	n	
Gas	Solid	Liquid	Soltd	Gas	Solid	Liquid	Solid	Assignment
2597 sh	2585 m		2596 vw	<u></u>	25B3 VVW		2587 VVW	H impurity
2568 m	2540 sh	2555	2545 VVW	2525 vw	2546 sh 2535 vw		2544 vvw	11 H
2528 w	2530 m 2500 m	2516	2509 vvw		2511 vvw 2498 vvw		2498 VVW	11 17 11 17
2137 VW	2285 vvw 2135 m	2143	2142 vvw	2120 VVW	2130 vvw,b	r	2129 VVW	и и .
1946 vvs	2055 vvw 1956 vvs	1953 vvs(p)	1950 vvs	1946 vvs	1932 vvs	1934 vvs	1933 vvs	V1+V2+V20+V28
	1940 sh 1900 s	1908			1894 vw,sh			$2v_{6}$
	1876 s	1872	1883 vw		1885 VW 1855 VVW		1859 vw	$v_{10} + v_{14}$
1826 vs	1869 sh 1834 vs	1834 vvs(p)) 1832 vs	1826 vs	1821 vvs	1825 vvs	1821 vve	V6 - V23 V3+ V29
1775 vvw	1767 m		1771 VVW	1720 vvw,br	1778 VVW 1736 VVW			$v_{11} + v_{22}$ $v_6 + v_{11}$
	1707 sh 1702 sh							$v_{10} + v_{22}$
	1697 m 1683 sh							$v_{10} + v_{15}$
1583 vs	1582 s	1598 VVS	1594 sh	1583 vs	1572 vvs	1585 vvs	1582	V13,V21,V30
	1570 sh	1908 AA2(b)) 1507 VVS		1535 vw	1517	1557 VW	$v_7 + v_{17}$
	1544 w 1536 sh					1517 W		$v_{0} + v_{2}$
	1529 Sh 1508 VVW							$v_{9} + v_{11}$
	1496 VVW 1478 sh				1457 VVW			
	1461 VVW 1442 VVW				1425 VVW			2V36 H impurity
	1410 VVW			1375 vvv.br	1382 vvw			$v_{1} + v_{1}$
1370 vvw,br	1370 w				1360 VW 1333 VVW			$v_{23} + v_{34}$
	325 VW				1311 VVW			$v_{12} + v_{32}$
	1310 vvw 1299 vvw				1281 VVW			2v25
	1286 vvw 1263 sh							$v_{17} + v_{19}$ $v_{8} + v_{19}$
	1258 VVW 1218 VVW.	br			1181 vvw			$v_{16} + v_{26}?$ $v_{9} + v_{12}$
	1192 vvw 1175 vw				1166			$v_{22} + v_{36}$ $v_{12} + v_{25}$
	1157 w				1151 VVW 1138 VVW			Va + V35 V5 + V36
	1097 w 1055 m				1046 m			V18 + V35 V5
1035 m	1032 s,br 997 s	1035 VVW		1030 m	1029 W 986			V31 V14 OF V22
	977 s 963 w	979 VVW			959 w 958			V16 + V22 V16 + V36?
	952 m 942 w			948 VVW	946 VW,DP 928 VVW			$v_{12} + v_{23}$?
	923 W 901 VW	010 -	924 VVW		894 sh	00 ⁰ m/n)	0.01	$v_{23} + v_{36}$
	893 vw	910 m		885 VVW	884 sh	000 m(p)	301	$v_{10} + v_{36}$
.855 s(A,C)	850 vvs	849 vw	856 m 828 sh	850 s(A,C)	842 vs	842 vw	843 vvw	V7, V33
	801 sh 820 w	816 s	020 3/1		801 sh	795 s (n)	801 m	· ?
805 s	806 vs	010 3		795 m	794 s 781 m	,,,, , , , , , , , , , , , , , , , , ,	001 11	
	773 m 753 vvu				763 m			V16 7
737 w	736 m		737 vvw		730 m 726 sh		739 w	V
725 m	718 m 704	724 m	728 m	720 w	714 m 697 w	715 m	717 vs	V 34
	693 VW	692 m			683 VVW	667 m	669 m	$v_{27} + v_{36}?$
650 s	678 VVS 656 VVS	656 m	680 vw 670 w	648 M(A.C)	670 s 651 s	648 m	656 m	V18 V25
					643 sh 628 sh			?
	630 VW 602 VVW				622 W			V38 + V36? ?
	589 VVW 532 W	582 w 534 s	585 w 540 m		519 w	570 w 516 s	580 m 528 s	V19 V12
	515 w 503 sh				505 vw 497 vvw			V 2 6 ?
	494 vs 463 vw	489	495		487 vs			V ₂₇ ? ?
	438 SN 433 m	430 VVW		v	426 m	420 VVW		V 3 5 ?
		190 W						V361

and two atoms as shown in Figure 4. Two terminal hydrogens are attached to each of the end (unshared) boron atoms and a single terminal hydrogen is attached to each of the central borons. Four bridging hydrogen atoms are located around the periphery of the boron skeleton.

On the basis of the X-ray results, the free molecule is presumed to have C_{2v} symmetry and is expected to be an

Figure 2.—Polarized Raman spectra of liquid ¹⁰B₄D₁₀ at -80°.

Figure 3.—Infrared spectra of tetraborane: (a) ${}^{11}B_4H_{10}$ vapor; (b) ${}^{11}B_4H_{10}$ solid at -180° ; (c) ${}^{11}B_4D_{10}$ vapor; (d) ${}^{11}B_4D_{10}$ solid at -180° .

Figure 4.—The tetraborane molecule.

asymmetric rotor. Calculations using the X-ray parameters show that the axis of the least moment of inertia extends lengthwise of the molecule in the plane of the two BH_2 groups and perpendicular to the C_2 axis. The largest moment of inertia is around the C_2 axis with the intermediate moment axis perpendicular to the C_2 axis and in the plane containing the two single terminal hydrogens. It is customary to classify the infrared band shapes of C_{2v} molecules into A, B, or C type bands depending on whether the vibrational motion involved produces a dipole moment change along the least, intermediate, or largest axis of inertia, respectively. These three types of vibration-rotation bands have fairly characteristic shapes which depend to some extent on the ratios of the various moments. Type A bands, for example, exhibit a strong central Q branch with fairly pronounced P and R branches on either side, a shape which is largely independent of the ratios of moments. Vibrations giving rise to A type bands will belong to the B_2 symmetry class of the B_4H_{10} molecule with the dipole moment change occurring along the least axis of inertia. Type B bands characteristically show a doublet structure due to the P and R branches since no Q branch is present. The P and R branches may be somewhat broad and diffuse. Type B bands in the present molecule are identified with the B_1 symmetry class. The shape of type C bands is strongly dependent on the ratio of the two smaller moments of inertia. If this ratio is greater than about 0.2, however, as is the case here, type C bands should have bands shapes similar to those of type A bands. Type C bands correspond to totally symmetric or A_1 vibrations since the dipole moment change is along the C_2 axis.

Experimental difficulties such as overlapping of bands, lack of resolution, perturbations, etc., may obscure band contours. However, a number of band shapes were sufficiently well defined in the present work to allow satisfactory identification. The spectra of the solids were noticeably more complex than those of the liquid or the gas. To a large degree, this was due to the increased sharpness of the bands at the lower temperatures which allowed composite bands to be resolved into their components. Further complexity was contributed by the relaxation of molecular selection rules, not to mention the possibility of additional lines from intermolecular interactions within the factor-group approximation. The space group of tetraborane is C_{2h}^{5} with four molecules per unit cell. No attempt was made in the present work to extend the analysis to include crystal effects.

Vibrational Assignments

Assuming $C_{2\nu}$ molecular symmetry, the vibrational modes of the B₄H₁₀ molecule may be classified into twelve A₁, seven A₂, eight B₁, and nine B₂ frequencies. For the free molecule, the A₁, B₁, and B₂ classes are infrared active while all classes are Raman active. In the solid, the A₂ class becomes infrared active as well.

The various molecular vibrational modes can be described most easily in terms of idealized group motions involving the BH_2 groups, the BH groups, the hydrogen bridge atoms, and the boron atom skeleton. The numbering scheme and a description of the fundamentals in terms of these group motions appear in Table IV and a pictorial representation is shown in Figure 5 for addi**V**1

¥2

Va

24

¥5 Ve

V7

v8

v9

 ν_{10} **v**11

 ν_{12}

 ν_{13}

V14 ν_{15}

¥16

 ν_{17}

 ν_{18}

v19

 ν_{20}

 ν_{21}

 ν_{22}

V23 ν_{24}

 ν_{25}

 ν_{26}

v27

 ν_{28}

V29

V 30

v31

V32

V 33

V34

V35

v36

TABLE IV	1			TABL	εV		
Descriptions of Vibrational Modes of Tetraborane		Frequ	JENCY AS	SSIGNMENTS	FOR TH	e Fundamen	TAL
Class A.			VIBRATI	ons of Te:	RABORA	NE (CM^{-1})	
In-phase B-H str		¹⁰ B ₄ H ₁₀	${}^{11}B_{4}H_{10}$	¹⁰ B ₄ D ₁₀	${}^{11}B_4D_{10}$		
Sym out-of-phase BH ₂ str				Summeter	Close A		
Sym in-phase BH ₀ str		2500	9570	1046	1046	DU atr	
++++ in-phase bridge str	<i>V</i> 1	2590	2570	1046	1046	BH, str	
++++ out-of-phase bridge str	1/2 1/2	2486	2475	1834	1821	BH ₂ str	
Out-of-phase BH def	P 3	2116	2095	1570	1559	Bridge str	
In-phase BH ₂ sciss	24 125	1461	1444	1055	1046	Bridge str	
In-phase BH ₂ rock	Ve	1269	1255	952	946	BH def	
++++ bridge def	רע 1	1157	1145	850	842	BH ₂ sciss	
In-phase boron ring expansion	ν.	917	908	736	730	BH ₂ rock	
Out-of-phase boron ring expansion	1 0	805	785	692	667	Bridge def	
Boron ring dihedral bend	P 10	975	965	910	888	Boron ring	expansion
	V 11	850	827	816	795	Boron ring	expansion
Class A_2	ν_{12}	575	559	532	519	Boron ring	bend
+ - + - in-phase bridge str				_	<i>.</i>		
				Symmetry	Class A	-2	
Out of phase BH wag	v_{13}	2150	2150	1583	1583	Bridge str	
Out of phase BH, twist	ν_{14}	1318	1308	977	969	Bridge str	
	ν_{15}	1124	1117			BH wag	
T = T = Diffuge def	ν_{16}	1042	1023	773	763	BH_2 wag	
I WISCOLD-D BOING AFOUND C2 AXIS	ν_{17}	872	868	704	697	BH ₂ twist	
Class B ₁	ν_{18}	754	737	678	670	Bridge def	
Out-of-phase BH str	ν_{19}	682	662	589	575	Skel twist	
++ in-phase bridge str				Symmetry	Class B		
++ out-of-phase bridge str	νοο	2590	2570	1946	1946	BH str	
In-phase BH def	V 20	2150	2150	1583	1583	Bridge str	
In-phase BH2 wag	V 22	1343	1324	997	986	Bridge str	
In-phase BH ₂ twist	V23	1211	1196	923	901	BH def	
++ bridge def	¥24	974	966	806	794	BH ₂ wag	
In-phase motion of BH groups parallel to B–B bond	v 25	854	846	656	651	BH ₂ twist	
Clarge B	¥28			515	505	Bridge def	
Δ are out of phase \mathbf{PH} at	P27			494	487	Skel def	
Asymin phase BH str				a .	<i>a</i> , <i>b</i>		
Asymmetry in phase bridge atr		~		Symmetry	Class B ₂	2	
+ + out-of-phase bridge str	ν_{28}	2590	2570	1946	1946	$BH_2 str$	
- +	ν_{29}	2486	2475	1834	1821	$BH_2 str$	
Out of phase BU soins	ν_{30}	2150	2150	1583	1583	Bridge str	
Out-of-phase BH- rock	ν_{31}	1410	1388	1032	1029	Bridge str	
+ + hridge def	ν_{32}	1071	1064	794	781	BH wag	
In-phase motion of BH groups perpendicular to the R-R	ν_{33}	1152	1140	850	842 714	BH ₂ SCISS	
hond	ν_{34}	906	898	(18	(14	BH2 rock	
~~~~~	<b>V</b> 35	483	472	430	4 <i>4</i> 0	priage der	

238

**v**36

236

195

tional clarity. These sketches may be considered a zero-order approximation to the normal coordinates and form a conveneint basis for discussion. A more accurate description must await a normal-coordinate analvsis.

A summary of the frequency assignments for the fundamental vibrations of the four isotopic species of tetraborane is given in Table V. Symmetry assignments were based on a consideration of band shapes, polarization properties of the Raman bands, comparisons between infrared and Raman spectra, and comparisons between gas and crystal spectra. Assignments within a symmetry class were made on the basis of boron and deuterium isotope shifts and by comparisons with published assignments of diborane¹²⁻¹⁵ and pentaborane(9).⁵ For uniformity, the frequency values cited in the Discussion sections to follow refer to the ¹⁰B₄H₁₀ species unless specific mention is made of another.

B-H and BH₂ Stretching Vibrations.—The out-ofphase stretching frequency of the BH₂ group and also the stretching frequency of a single terminal hydrogen on boron, from the work on diborane and pentabo-

(12) R. C. Lord and E. Nielsen, J. Chem. Phys., 19, 1 (1951).

(14) I. M. Mills, J. Chem. Phys., 41, 1479 (1964).

(15) W. J. Lafferty, A. G. Maki, and T. D. Coyle, J. Mol. Spectrosc., 38, 189 (1970).

rane(9), have both been located at about  $2600 \text{ cm}^{-1}$ . In tetraborane, since neither the two BH groups nor the two BH₂ groups are closely coupled with each other, little separation may be expected between these stretching modes. The band at about  $2590 \text{ cm}^{-1}$  obviously is complex and consequently all four fundamentals,  $\nu_1$ ,  $\nu_2$ ,  $\nu_{20}$ , and  $\nu_{28}$ , are assigned to this peak. In diborane, the two in-phase BH2 vibrations have been assigned to frequencies at about  $2525 \text{ cm}^{-1}$ . By analogy, the 2495-cm⁻¹ band in the infrared spectrum of gaseous tetraborane is delegated to  $\nu_3$  and  $\nu_{29}$ .

189

Skel def

Bridge Stretching Vibrations.—The bridge modes expected to have the highest frequency are those in which the two bonds connected to each bridge atom stretch in phase. By analogy with diborane, the inphase stretching frequencies were sought around 2100  $cm^{-1}$ . The band at 2116  $cm^{-1}$  in the tetraborane Raman spectrum was observed to be strongly polarized and is therefore assigned to  $v_4$ ; the other three modes,  $\nu_{13}$ ,  $\nu_{21}$ , and  $\nu_{30}$ , are thought to be contained in the infrared band with its maximum at 2150 cm⁻¹ in the spectrum of the gas.

The remaining bridge modes are those in which the two bonds connecting given bridge hydrogen atoms stretch out of phase. These were more difficult to assign since this type of vibration, based on the few data that are

⁽¹³⁾ R. C. Taylor and A. R. Emery, Spectrochim. Acta, 10, 419 (1958).



Figure 5.—Approximate normal modes for the tetraborane molecule based on equivalent atom sets.

available, appears to vary significantly from compound to compound and is more easily influenced by the rest of the molecule. The easiest band to assign of this group was  $\nu_5$  which was assigned to a polarized Raman frequency at 1454 cm⁻¹. In the infrared spectrum several lines occur in this region. The most intense of these at 1407 cm⁻¹ has a band shape suggestive of either a type A or C band and consequently is assigned to the B₂ fundamental. The remaining two modes are assigned with less certainty. However, the two bands at 1318 and 1343 cm⁻¹ were observed in the infrared spectrum of the solid and not of the gas and are tentatively assigned as the A₂ and B₁ out-of-phase stretches,  $\nu_{14}$  and  $\nu_{22}$ , respectively. A fairly large change in relative intensity of these two bands occurs upon substitution of boron-11 for boron-10 which may indicate resonance with overtones or combinations of lower frequencies.

BH₂ Bending Vibrations.—In diborane, the two BH₂

scissoring modes have been assigned at 1177 and 1180 cm⁻¹. In tetraborane, an intense band having several maxima occurs at 1155 cm⁻¹ in the infrared spectrum of the solid. This band correlates with a relatively simple band at 850 cm⁻¹ in the spectrum of  $B_4D_{10}$  vapor. The latter appears to possess an A or C type of band envelope indicating a  $B_2$  or  $A_1$  vibration. The band is assigned to both  $\nu_7$  and  $\nu_{33}$ . The complexity of the band in the spectrum of the hydrogen species is attributed to interactions with overtones and combinations.

The two BH₂ wagging motions of diborane have frequencies of 973 and 1035 cm⁻¹. In solid tetraborane, the infrared spectrum exhibits a number of strong bands from 1124 to 854 cm⁻¹. Of these, the three at 1124, 1042, and 872 cm⁻¹ appear to be absent in the spectrum of the gas and are candidates for A₂ frequencies while the frequency at 974 cm⁻¹ does not show a central Q branch in the gaseous spectrum indicative of symmetry class B₁. Since one would not expect the BH₂ wagging frequencies of tetraborane to be markedly different from those of diborane, the frequencies at 1042 and 974 cm⁻¹ are assigned, respectively, to  $\nu_{16}$  and  $\nu_{24}$ .

The two BH₂ rocking modes of tetraborane,  $\nu_8$  and  $\nu_{34}$ , belonging to symmetry classes A₁ and B₂ are assigned to infrared bands at 917 and 906 cm⁻¹, respectively, by analogy with the corresponding modes in diborane at 950 and 920 cm⁻¹.

The lowest bending modes of the BH₂ groups are the twisting motions,  $\nu_{17}$  and  $\nu_{25}$ , which are assigned to infrared bands at 872 and 854 cm⁻¹. The first is characterized as A₂ by its absence in the gas infrared spectrum and its presence in that of the solid. The second can be classified as A₁ or B₂ by its band shape which is either type A or C. In diborane, corresponding modes occur at 1012 and 829 cm⁻¹.

BH Bending Vibrations.—Although the infrared and Raman spectra of decaborane(14)¹⁶ indicate that no BH deformation modes occur in that molecule higher than 1104 cm⁻¹, greater coupling may be expected in  $B_4H_{10}$ and the frequencies may not be as low. Of the four fundamentals involving the deformation of the single terminal hydrogens,  $\nu_6$  and  $\nu_{23}$  belong to the classes A₁ and  $B_1$ . The  $A_1$  vibration is assigned to the infrared band at 1269 cm⁻¹ which shows definite PQR branches in the spectrum of the gas. The  $B_1$  mode is delegated to the infrared frequency at  $1211 \text{ cm}^{-1}$ , primarily because it is the only intense peak in this region which remains unassigned. The other two modes,  $\nu_{15}$  and  $\nu_{32}$ , belong to the A2 and B2 classes and are assigned to bands at 1124 and 1071 cm⁻¹, respectively. The first is chosen as the  $A_2$  band because of its absence in the gaseous infrared spectrum and its presence in that of the solid. The other band shows a band shape consistent with that expected for the B₂ symmetry class.

Skeletal Vibrations and Bridge Deformation Modes. —Four types of internal coordinates are appropriate to describe these modes—the B-B distances, the bridge BHB angles, and the dihedral angles between the planes defined by the BHB atoms and the attached BBB triangle, and between the two BBB triangles. Changes in the first, third, and fourth types of coordinates combine to give the skeletal modes labeled  $\nu_{10}$ ,  $\nu_{11}$ ,  $\nu_{12}$ , and  $\nu_{19}$  in

(16) R. C. Taylor, unpublished observations.

Table IV. The remaining coordinates are those involved primarily in the vibrations designated as bridge deformations. Since all these coordinates are defined essentially by the same atoms it is highly likely that the normal modes involving them are strongly mixed. Support for this conclusion is found in the observation that most of the bands below  $800 \text{ cm}^{-1}$  have hydrogen: deuterium ratios intermediate between those expected for "pure" hydrogen motions and "pure" skeletal motions.

The four frequencies of these two types belonging to the A₁ class were identified by their polarization properties in the Raman spectrum. The frequencies  $\nu_{9}$ ,  $v_{10}$ ,  $v_{11}$ , and  $v_{12}$  were assigned, respectively, to the Raman bands at 805, 975, 850, and 579  $\text{cm}^{-1}$ . The order of the frequencies  $\nu_{10}$ ,  $\nu_{11}$ , and  $\nu_{12}$  was determined by a simplified numerical calculation assuming a simple model with only four boron atoms having the same configuration as diborane. Several different sets of force constants were tried but all gave the result that the in-phase ring stretching mode had a higher frequency than the out-ofphase mode. The polarized Raman line at  $805 \text{ cm}^{-1}$ assigned to  $\nu_9$  shows too small a shift upon deuteration to be a reasonably pure hydrogen motion. In addition, an unusually large change in intensity occurs between the spectra of the two isotopic species which seems to indicate significant coupling with  $v_{11}$  in the hydrogen compound.

A fairly intense Raman line at  $672 \text{ cm}^{-1}$  is weak in the infrared spectrum of the solid and absent in the spectrum of the gas indicating that it probably is of A₂ symmetry. Since the H:D isotope frequency ratio is low (1.15), this band is assigned to the other skeletal mode,  $\nu_{18}$ .

The remaining five frequencies associated with the skeleton and bridge hydrogen deformation motions have been designated only tentatively. No reliable information was obtained in the present work to distinguish them although bands considered likely to correspond to these various modes have been labeled in Tables II, III, and V.

Despite the fact that certain of the preceding assignments must be considered tentative, the amount of information provided to establish the symmetry species of many of the bands can serve as a solid basis for future work. The infrared results are incomplete below 400 cm⁻¹ and further work involving oriented single crystals or matrix studies using higher resolution infrared and Raman spectroscopy is much to be desired.

The group frequency approach used here is likely to be most accurate for the normal modes primarily associated with the stretching and deformations of B–H bonds, somewhat less accurate for motions involving the bridge hydrogens, and poorest for the low-frequency motions which are probably complex in character. A normal-coordinate analysis would be necessary to gain further insight but unfortunately would not be a trivial task.

Acknowledgment.—The work reported here was supported in part by the National Science Foundation under Grants G-10372 and G-21408. The authors are indebted to Dr. P. H. Clippard for help in preparing the manuscript.